On a generalization of Regińska's parameter choice rule and its numerical realization in large-scale multi-parameter Tikhonov regularization

نویسندگان

  • Fermín S. Viloche Bazán
  • Leonardo S. Borges
  • Juliano B. Francisco
چکیده

A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the single-parameter case, the algorithm does not require any information on the noise level. Further, combining projection over the Krylov subspace generated by the Golub–Kahan bidiagonalization (GKB) algorithm and the MFP method at each iteration, we derive a new algorithm for large-scale multiparameter Tikhonov regularization problems. The performance of MFP when applied to well known discrete ill-posed problems is evaluated and compared with results obtained by the discrepancy principle. The results indicate that MFP is efficient and competitive. The efficiency of the new algorithm on a super-resolution problem is also illustrated. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Parameter Tikhonov Regularization

We study multi-parameter Tikhonov regularization, i.e., with multiple penalties. Such models are useful when the sought-for solution exhibits several distinct features simultaneously. Two choice rules, i.e., discrepancy principle and balancing principle, are studied for choosing an appropriate (vector-valued) regularization parameter, and some theoretical results are presented. In particular, t...

متن کامل

Adaptive regularization and discretization of bang-bang optimal control problems

In the article, Tikhonov regularization of control-constrained optimal control problems is investigated. Typically the solutions of such problems exhibit a so-called bang-bang structure. We develop a parameter choice rule that adaptively selects the Tikhonov regularization parameter depending on a-posteriori computable quantities. We prove that this choice leads to optimal convergence rates wit...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters

In this paper, we study the multi-parameter Tikhonov regularization method which adds multiple different penalties to exhibit multi-scale features of the solution. An optimal error bound of the regularization solution is obtained by a priori choice of multiple regularization parameters. Some theoretical results of the regularization solution about the dependence on regularization parameters are...

متن کامل

Morozov’s Discrepancy Principle for Tikhonov-type functionals with non-linear operators

In this paper we deal with Morozov’s discrepancy principle as an aposteriori parameter choice rule for Tikhonov regularization with general convex penalty terms Ψ for non-linear inverse problems. It is shown that a regularization parameter α fulfilling the discprepancy principle exists, whenever the operator F satisfies some basic conditions, and that for this parameter choice rule holds α→ 0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2012